On the Hahn-Banach theorem for Hilbert C*-modules
نویسنده
چکیده
We show that for a given C*-algebra A and for any pair of Hilbert A-modules {{M, 〈., .〉},N ⊆ M} every bounded A-linear mapping r : N → A can be continued to a bounded A-linear mapping r : M → A so that (i) ‖r‖ = ‖r‖, (ii) r restricted to N equals r and (iii) the extended mappings of N ′ form a Banach A-submodule of M wherein the extensions {r n : n ∈ N} of the standardly embedded mappings {rn = 〈., n〉 : n ∈ N} ⊆ M ′ coincide with the latter, if and only if the multiplier C*algebra M(A) of A is monotone complete, if and only if the multiplier C*-algebra M(A) of A is additively complete. In this case the restrictions of the extended mappings r ∈ M to N ⊆ M equal zero automatically. This generalized Hahn-Banach theorem is valid for a particular pair {M,N ⊆ M} of Hilbert A-modules if and only if the bi-orthogonal complement N of the Hilbert A-submodule N taken with respect to the A-bidual Hilbert A-module {M, 〈., .〉} of M is a direct summand of M and the A-bidual Banach C*-modules N ′′ and (N) coincide. Classification numbers: 46L99, 46H25
منابع مشابه
A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کاملArens regularity and derivations of Hilbert modules with the certain product
Let $A$ be a $C^*$-algebra and $E$ be a left Hilbert $A$-module. In this paper we define a product on $E$ that making it into a Banach algebra and show that under the certain conditions $E$ is Arens regular. We also study the relationship between derivations of $A$ and $E$.
متن کاملThe study on controlled g-frames and controlled fusion frames in Hilbert C*-modules
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...
متن کاملOn Hahn-banach Type Theorems for Hilbert C*-modules
We show three Hahn-Banach type extension criteria for (sets of) bounded C*-linear maps of Hilbert C*-modules to the underlying C*-algebras of coefficients. One criterion establishes an alternative description of the property of C*-algebras to be monotone complete or additively complete.
متن کاملBanach Spaces
Paul Garrett [email protected] http://www.math.umn.edu/ g̃arrett/ [This document is http://www.math.umn.edu/ ̃garrett/m/fun/notes 2012-13/05 banach.pdf] 1. Basic definitions 2. Riesz’ Lemma 3. Counter-example: non-existence of norm-minimizing element 4. Normed spaces of continuous linear maps 5. Dual spaces of normed spaces 6. Banach-Steinhaus/uniform-boundedness theorem 7. Open mapping theore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996